Telegram Group & Telegram Channel
🎯 Отличный момент, чтобы поговорить про смещение (bias) и разброс (variance)

Разложение ошибки модели на смещение и разброс называется bias-variance decomposition. Bias показывает, насколько предсказания алгоритма систематически отклоняются относительно истинных значений. Variance характеризует разброс предсказаний в зависимости от обучающей выборки.

В целом, смещение говорит о том, насколько близкие к истинным значения выдаёт модель, а разброс — насколько она чувствительна к изменениям в обучающей выборке.

Есть такое понятие как trade-off (компромисс) между bias и variance. Идея состоит в том, чтобы найти баланс, при котором модель достаточно сложна, чтобы выдавать приближённые к реальным ответы (низкий bias), но также имеет способности к обобщению, чтобы работать хорошо на новых данных (низкий variance).

Если модель недообучена, она не сможет уловить сложные закономерности в данных (высокий bias), но будет более стабильно работать на новых данных (низкий variance). Если модель переобучена, она будет отлично работать на тренировочных данных (низкий bias), но плохо на новых (высокий variance).



tg-me.com/ds_interview_lib/93
Create:
Last Update:

🎯 Отличный момент, чтобы поговорить про смещение (bias) и разброс (variance)

Разложение ошибки модели на смещение и разброс называется bias-variance decomposition. Bias показывает, насколько предсказания алгоритма систематически отклоняются относительно истинных значений. Variance характеризует разброс предсказаний в зависимости от обучающей выборки.

В целом, смещение говорит о том, насколько близкие к истинным значения выдаёт модель, а разброс — насколько она чувствительна к изменениям в обучающей выборке.

Есть такое понятие как trade-off (компромисс) между bias и variance. Идея состоит в том, чтобы найти баланс, при котором модель достаточно сложна, чтобы выдавать приближённые к реальным ответы (низкий bias), но также имеет способности к обобщению, чтобы работать хорошо на новых данных (низкий variance).

Если модель недообучена, она не сможет уловить сложные закономерности в данных (высокий bias), но будет более стабильно работать на новых данных (низкий variance). Если модель переобучена, она будет отлично работать на тренировочных данных (низкий bias), но плохо на новых (высокий variance).

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/93

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA